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ABSTRACT

The Independent Component Analysis (ICA) is a recently developed technique for component extraction. This
new method requires the statistical independence of the extracted components—a stronger constraint that uses
higher-order statistics—instead of the classical decorrelation (in the sense of ‘‘no correlation’’), which is a weaker
constraint that uses only second-order statistics. This technique has been used recently for the analysis of
geophysical time series with the goal of investigating the causes of variability in observed data (i.e., exploratory
approach). The authors demonstrate with a data simulation experiment that, if initialized with a Principal Com-
ponent Analysis (PCA), the ICA performs a rotation of the classical PCA (or EOF) solution. This experiment
is conducted using a synthetic dataset, where the correct answer is known, to more clearly illustrate and understand
the behavior of the more familiar PCA and less familiar ICA. This rotation uses no localization criterion like
other rotation techniques; only the generalization of decorrelation into full statistical independence is used. This
rotation of the PCA solution seems to be able to avoid the tendency of PCA to mix several components, even
when the signal is just their linear sum.

1. Introduction

This work concerns methods for the investigation of
the physical causes of variability of a dynamical system,
for example, the climate, from observations of its be-
havior. The observed time series of the system’s state can
be produced by a mixture of different components rep-
resenting different physical processes. In the most general
case, the time series x( j) with temporal dimension N at
a particular spatial coordinate j ∈ {1, . . . , M}, where M
is the spatial dimension, is the result of the mixture of
these components s ( j) by an operator G:

x( j) 5 G[s ( j)]. (1)

In this paper we use lower (upper) case bold letters to
indicate vectors (matrixes) and we will refer to a par-
ticular spatial location as a pixel. We consider decom-
position in time—that is, the observations, x( j), are time
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series at each pixel, j—but the following discussion
would be the same for a decomposition in space.

The goal of the analysis method is to infer the un-
known contributing components s ( j) from the ob-
served data x( j). Often in performing such an analysis,
one does not know a priori much about what G is like,
even whether it is linear or not. We introduce

h 5 J(x) . s, (2)

where J is an estimate of the unknown inverse mapping
G21 and h is an estimate of the unknown vector s.
Analysis methods that estimate J and h are called com-
ponent extraction techniques.

If G is nonlinear and cannot be usefully linearized,
then we are faced with a component extraction problem
that is highly complex for many reasons. First, the def-
inition of a well-adapted nonlinear component extrac-
tion model J is difficult without some a priori infor-
mation about the nonlinear mixture model G. Using ge-
neric statistical models for the nonlinear regressions of
J often introduces too many degrees of freedom, which
ruins the inference process. Second, the determination
of the extracted components is much more complex
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since the basis functions gi[s ( j)], vary with location j.
Third, the uniqueness of the result and its interpretation
in physical-process terms is difficult to demonstrate.
Some nonlinear techniques have been developed (Mon-
ahan 2000) but their main application is to represent
complex data in a more compact way (i.e., compres-
sion). Here, we are not concerned with this use of such
techniques, but with the extraction of ‘‘meaningful’’
(i.e., causal) components to understand how a dynamical
system works. Currently, all the ‘‘classical’’ (and most
frequently used) extraction methods are linear; the use
of nonlinear models in (2) for component extraction is
only just beginning. The nonlinear case is beyond the
scope of this paper.

One approach that may be useful when G is complex
is to linearize (1) using G[s0(j)], the Jacobian matrix
of the nonlinear operator G near a particular state, s0(j):

0Dx( j) 5 G[s ( j)] · Ds( j) (3)
0 05 g [s ( j)] · Ds ( j) 1 g [s ( j)] · Ds ( j)1 1 2 2

01 · · · 1 g [s ( j)] · Ds ( j),Q Q (4)

where D is the difference operator, and the temporal
basis functions g1[s0(j)], . . . , gQ[s0(j)], which are the
columns of the matrix [s0(j)], are unknown time seriesG
describing a fixed dynamical behavior at each pixel, j.
Each gi[s0(j)] is the temporal response to a perturbation
Dsi(j) of ith component at pixel j when the state is given
by s0(j). For example, in the case where the physical
component i is an oscillating wave propagating in space,
the time series gi[s0(j)] have the same shape as the
source but with a time delay dependent on the distance
between their location at pixel j and the source of the
wave.

When G is known a priori to be linear or has been
linearized to , the equivalent to (1)–(4) when the timeG
series x( j) at particular spatial coordinate j ∈ {1, . . . ,
M} is decomposed in time, is:

x( j) 5 G · s( j)

5 g s ( j) 1 g s ( j) 1 · · · 1 g s ( j), (5)1 1 2 2 Q Q

where the temporal basis functions, g1, . . . , gQ, which
are the columns of matrix G, are unknown time series
describing a fixed dynamical behavior. In contrast with
the nonlinear case, the basis functions gi are independent
of the geographical location j. Each gi could be a signal
with a different physical cause operative in a particular
geographical region represented by a different compo-
nent map {s i(j); j 5 1, . . . , M}. The goal of the analysis
is to infer the unknown contributing components s ( j)
from the observed data x( j). In the linear case, we write
(2) as

h 5 J · x . s, (6)

where J is an estimate of the unknown matrix G21 (the
superscript 21 represents the pseudoinverse if G is not

square) and h is an estimate of the unknown vector s.
The ability of statistical analysis techniques to retrieve
good estimates, h, of the true components, s, is highly
dependent on the quality of the statistical dataset used
(i.e., a sufficiently large number of independent ex-
amples is needed to sample all the variations involved)
and on the technical assumptions that are made about

and h.J
There are many techniques that have been developed

to estimate and h. The one most frequently used byJ
the climate research community today is the Principal
Components Analysis (PCA) or empirical orthogonal
function (EOF) method (Lorenz 1951; von Storch and
Frankignoul 1998). Sometimes, modifications of this
method are used that either apply some other criterion
besides maximizing the variance explained by each
component or relax the requirement for orthogonal basis
functions. These methods use this additional informa-
tion to perform an orthogonal or oblique rotation of a
previous PCA solution; we refer here to this large set
of methods as rotational techniques (RT; Horel 1981;
Richman 1986). We formulate a general linear case and
the classical analysis techniques in section 2.

The PCA solution has some well-known difficulties.
1) The spatial orthogonality of the eigenvectors is not
well-adapted to all problems. As a consequence, many
EOF solutions display an artificial alternating sign struc-
ture. Horel (1981) quotes many cases in the literature
of this artificial feature, for example for the sea level
pressure in restricted regions such as Australia or the
Arctic. 2) The principal components depend on the do-
main used for the analyses (see, e.g., different results
obtained for the EOF analysis of the sea level pressure
in the North American region; Buell 1975). 3) Weight-
ing of geophysical data in the EOF analysis and in ro-
tated analysis seems to have an important impact on the
results obtained (Chung and Nugam 1999). Further-
more, (Karl et al. 1982) comment on possible distortions
when using irregularly spaced data. 4) EOF components
can be hard to interpret physically because of all these
problems. All these concerns have led to the develop-
ment of the rotational techniques (Horel 1981; Richman
1986).

The Independent Component Analysis (ICA) is de-
scribed in section 3. This method, which can be inter-
preted as a rotation technique, is based on information
theory and has been recently developed in the context
of signal processing studies and of the development of
neural coding models (Jutten and Herault 1991; Atick
1992; Bell and Sejnowski 1995). This technique has
now been studied for some time by the statistical anal-
ysis research community and many recent applications
of the ICA paradigm can be found in the ICA 1999
proceedings (Cardoso et al. 1999) or Hyvärinen and Oja
(2000), but this method has not been used for analysis
of climatological observations (Aires et al. 2000). The
two major distinctions between the ICA approach and
the classical techniques are the following.
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R The method extracts statistically independent com-
ponents, even if these components have non-Gaussian
probability distribution functions, by making use of
higher-order statistics, whereas the PCA and RT ap-
proaches use only second-order statistics.

R A linear mixture model is not assumed; any extraction
model could be used with the ICA paradigm (Burel
1992), which allows for the introduction of pertinent
a priori information about the mixture model, if it is
available.

We will show that the ‘‘linear’’ (this term will be
explained in the following) and PCA-initialized form of
ICA, described here, performs a rotation of the PCA
solution, eliminating the mixing problem: PCA has the
tendency to mix several components, even when the
signal is just the linear sum. We argue that, because of
certain general features of the ICA approach, it is a
particularly promising technique for rotations of the
PCA solution. Furthermore, a previous study that ap-
plies a similar ICA to the analysis of variations of trop-
ical sea surface temperature time series (Aires et al.
2000) illustrates its potential to separate a geophysical
time series into more meaningful components.

To illustrate most clearly how ICA avoids the com-
ponent mixing problem, we construct a synthetic da-
taset, where the true answer to the decomposition prob-
lem is known, and apply PCA-initialized Independent
Component Analysis to extract components (section 4).
We have deliberately devised a dataset that exagerates
characteristics found in the real atmospheric observa-
tions to, on the one hand, make it even easier for PCA
to separate the components and to, on the other hand,
challenge whether ICA can separate distinct modes of
variability when they are similar in their space and time
distributions. In particular, the synthetic dataset is
formed by a linear sum of components, some of which
are better-separated in space and time than in real at-
mosphere, and some of which overlap in space, are cor-
related in time, or represent teleconnections as in the
real case. Thus, this dataset is created so that it has
structures that a linear component extraction techniques
should find. If a method fails on this simple case, it is
unlikely to succed when applied to the more ambiguous
climate case. We show that, even in the simple linear
case, the PCA technique mixes the components incor-
rectly. We also show that the ICA method performs a
rotation to correctly separate the components, but, as
for all statistical component extraction methods, this is
only a necessary condition not a sufficient guarantee of
success for climate analysis.

The goals of this paper are then to illustrate some of
the problems of the most commonly used classical anal-
ysis technique, even in the simple linear case, and to
introduce a new component extraction technique that
overcomes these problems, at least in its linear form
(section 5). We compare linear ICA to PCA to measure
the effect of the rotation transformation by the ICA

algorithm. We do not use a priori information for the
component extraction experiments since we are inter-
ested in exploratory techniques, not confirmatory ones;
that is, we want a technique to find the correct but un-
known components, not confirm results from another
analysis.

2. The linear case and classical component
extraction techniques

A common approach for statistical component ex-
traction is to require the decorrelation of the extracted
components, in which case the covariance matrix of
extracted components ^ht · h& is constrained to be di-
agonal; but this decorrelation constraint has an infinity
of solutions because

J 5 Q · J ,0 (7)

where Q is any undetermined Q 3 Q matrix so that
Qt·Q 5 IQ3Q · J0 5 S21/2 · Et is a Q 3 N matrix with
S the truncated diagonal matrix of the larger (in de-
creasing order) eigenvalues of ^xt · x& and E the N 3 Q
matrix with the associated normalized eigenvectors in
the columns.

One particular decorrelation solution is the well-
known PCA or, in the geophysical community, EOF1

analysis, first used in atmospheric sciences by Lorenz
(1951). In this technique, an additional constraint is add-
ed to resolve the indeterminacy of the decorrelation so-
lutions: successive extracted components have to ex-
plain the maximum remaining variance. This solution
is given by taking Q 5 IQ3Q in (7). Depending on which
space the PCA is applied to (space, time, frequency,
multivariate data, etc), the PCA has also been called
Singular Spectrum Analysis (Broomhead and King
1986; Vautard et al. 1992), Multichannel Singular Spec-
trum Analysis (Vautard et al. 1996), Extended Empirical
Orthogonal Functions (Korres et al. 2000), Multivariate
Empirical Orthogonal Function (Xue et al. 2000), etc.

Three well-known problems arise when using the
PCA technique. 1) Even if the mixing of the components
is linear as in Eq. (5), the maximum-explained-variance
assumption can lead to a different mixing in the ex-
tracted components (Kim and Wu 1999) as we will be
shown here (see Fig. 1a for an schematic illustration of
this problem in a two-dimensional case). 2) This mixing
problem is also particularly serious when the PCA is
applied to data that have more than one component with
about the same variance. In this case, the problem is
not solvable since any orthogonal rotation of the prin-
cipal components (i.e., in the space of the ‘‘degenerate’’
eigenvectors) will be a PCA solution (Fig. 1b). 3) Since
PCA imposes orthogonality on the extracted basis func-
tions, mixing problems also arise when the actual phys-
ical basis functions are not orthogonal (Fig. 1c). Another

1 EOF is a specific form of the general PCA were the extracted
basis functions are normalized.
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FIG. 1. Illustration of the problems encountered by PCA when
observations, two-dimensional (coordinates x and y), come from two
components defining ellipses E1 and E2. The line D represents the
first PCA axis defining the first PCA component: (a) mixing due to
the maximum-explained-variance constraint, (b) indeterminacy when
two components have same variance, and (c) mixing due to the non-
orthogonality of components.

problem for the application of the PCA to geophysical
data arises from an irregularly spaced grid of pixels that
can lead to distorted basis functions (Karl et al. 1982).

The PCA assumptions (linearity, orthogonality, max-
imum variance explained by each successive compo-
nent) used to resolve the solution indeterminacy are not
known, a priori, to be valid for a particular dataset. They
are not likely to be valid for climate variations. If these
assumptions are not valid, variations that are not phys-
ically connected could be artificially mixed together into
one extracted component (i.e., the mixing problem).
This is the reason why PCA is often used in restricted
geographical domains instead of global domains or ap-

plied to prefiltered data to try to isolate a single dom-
inant mode of variation, which PCA can correctly iden-
tify. Thus, although PCA is useful for compressing in-
formation by describing the most variance with the few-
est terms in an expansion (as a dimension-reduction/
compression technique), it can lead to misinterpretation
of physical relationships when used as a component
extraction technique.

Rotational techniques were introduced (Horel 1981;
Richman 1981), in part, to obtain a more physically
interpretable solution and to avoid some of the problems
of PCA. In these approaches, an additional constraint
of localization, based on the so-called simple structure
principle, is used to solve the indeterminacy of the de-
correlation solutions. The rotations are said to be or-
thogonal (the rotation matrix is an orthogonal matrix)
or oblique (this constraint is relaxed). There exist many
proposed localization criteria: quartimax, varimax,
transvarimax, quartimin, oblimax, etc. [see the review
paper of Richman (1986) on this subject]. Two general
distinct classes of RT solution can be distinguished:
confirmatory RT where a priori information about the
components is available and we want to verify the hy-
pothesis, and exploratory RT where almost no a priori
information about the problem is available. We are in-
terested in the exploratory case where no a priori in-
formation is available. Since no general principle for
choosing a particular localization criterion from this
large set of proposed solutions is available, use of a
particular RT method in exploratory mode may be
equivalent to introducing a priori information about the
localization that may not be any better suited to the
particular problem than PCA.

The most commonly used criterion for orthogonal
rotation is

2Q N Q Ng
4 2V (G) 5 (G ) 2 (G ) , (8)O O O Og i j i j[ ]Nj51 i51 j51 i51

where the constant g gives a family of rotations with
g 5 1.0 giving varimax rotations, and g 5 0.0 giving
quartimax rotations. The implementation of these tech-
niques is not trivial, but automatic routines are available
(see, e.g., the routine G03BAF in the NAG FORTRAN
Library Routine Document).

Despite the proposed alternatives to the variance max-
imization assumption and the orthogonality constraint
used in various RT methods, they still all share two
fundamental properties with PCA: they assume that the
meaningful components are linearly mixed (classical
techniques are intimately linked to the linear assumption
and cannot be generalized to nonlinear models) and that
only second-order statistics need be evaluated.

3. The Independent Component Analysis
technique

In this section, we describe the main concepts un-
derlying the ICA technique. For more details, the in-
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terested reader is referred to Bell et al. (1995) and Aires
et al. (2000). The ICA technique aims to extract statis-
tically independent components, a stronger constraint
than the decorrelation requirement of the PCA.

The statistical independence of two variables, h1 and
h2, is determined when their joint probability distri-
bution can be factored:

P(h , h ) 5 P(h ) · P(h ).1 2 1 2 (9)

This constraint involves higher-order statistics whereas
the decorrelation constraint only involves second-order
statistics (i.e., mean and variance). Decorrelation is
equivalent to statistical independence only in the case
where the quantities are Gaussian distributed, so the
higher-order statistics are particularly important when
the analyzed data have components with non-Gaussian
distributions (Comon 1994). Avoiding the a priori as-
sumption that second-order statistics are sufficient is
important when the components are unknown as is usu-
ally the case, but especially when some components may
be partly correlated (as we will show).

It is also important to distinguish the non-Gaussian
character of the components, s, from the non-Gaussian
character of the data x in Eq. (5). If the data have a
non-Gaussian distribution, then at least one component
is also non-Gaussian, since for the simplest linear mix-
ture of Gaussian components (not to be confused with
a ‘‘mixture of Gaussians,’’ which usually means that the
random variable has one of a number of possible dis-
tributions), the distribution would be Gaussian, but a
nonlinear combination of Gaussian distributions could
also be non-Gaussian. Some previous studies examine
the non-Gaussian behavior of geophysical data (Burgers
and Stephenson 1999; Aires et al. 2000).

A variable is characterized by all its statistical cu-
mulants: the first cumulant is the mean, the second is
the variance, the third is the skewness, the fourth cu-
mulant is the kurtosis, etc. (Press et al. 1992). For Gauss-
ian variables, cumulants higher than 2 are zero. When
data have a zero mean, the ‘‘skewness’’ skew(X) 5 ^X 3&/
s3 and the ‘‘kurtosis’’ kurt(X) 5 ^X 4&/s4 2 3. These
cumulants are often used to test the departure from
Gaussian behavior. The skewness measures the sym-
metry of the probability distribution function: when the
skewness is positive, larger events are more probable
then smaller events, and the reverse is true when the
skewness is negative. The kurtosis is a measure of the
sharpness of the distribution: a negative kurtosis indi-
cates that the distribution has a broader central peak and
larger tails than a Gaussian distribution (sub-Gaussian),
a positive kurtosis indicates that the distribution has a
sharper central peak (super-Gaussian distribution). The
non-Gaussian character of a variable is intimately linked
to nonlinear dynamics (Palmer 1999). For example, a
nonlinear dynamical system with two attractors can re-
sult in bimodal distributions. Thus, without a priori in-
formation on the Gaussianity of components in an anal-
ysis of geophysical time series, the use of ICA is rec-

ommended since its requirement of statistical indepen-
dence is more general than the decorrelation assumption.

The time series observations are gathered into a da-
taset, , of M observations, x( j) 5 ( ; t 5 1, . . . , N),t tX xj j

with j ∈ {1, . . . , M}, where M is the spatial dimension
of the time series and N is its temporal dimension. The
times series x( j) is assumed to be a mixture of statis-
tically independent components s 5 {si; i 5 1, . . . ,
Q}:

x( j) 5 G[s ( j)] (10)

where G is an unknown mixture operator, which is, by
hypothesis, nonsingular (i.e., it can be inverted).

The goal of ICA is to retrieve a function J: x → h,
where h is an estimate of s and the terms {hi; i 5 1,
. . . , Q} are statistically independent. The estimate h is
defined as a deterministic function (linear or not) of the
observations:

h 5 J (W , x); i 5 1, . . . , Q,i i i (11)

where {Wi; i 5 1, . . . , Q} is the set of parameters of
J. As in RT, the number of components, Q, is here sup-
posed to be known. This number can be estimated, in
easy cases, by a break in the frequency spectrum of the
data; for more difficult spectra, see for example (Jolliffe
1986). With real observations, Q depends on the anal-
ysis objectives: extracting a lot of components allows
for more complete description of the variability but
makes the interpretation much more complicated,
whereas extracting fewer components focuses attention
on fewer different phenomena at the cost of explaining
less of the variability. The reader interested in this topic
should refer to an article by Nadal et al. (2000).

The parameters, Wi, are estimated by applying a gra-
dient descent algorithm to a cost function that specifies
the statistical independence of the {hi; i 5 1, . . . , Q}.
Different equivalent cost functions can be used; we use
here the infomax approach to ICA (Nadal and Parga
1994) for which simple algorithms have been derived
(Bell and Sejnowski 1995). Information theory is used
to specify the statistical independence cost function: the
fundamental quality is information redundancy. Given
Q variables, h1, h2, . . . , hQ, the information redundan-
cy, R(h1, h2, . . . , hQ), is defined as the Kullback di-
vergence (Dacunha-Castelle and Duflo 1982) between
the joint distribution, Ph(h1, h2, . . . , hQ), and the fac-
torized distribution, P1(h1) · P2(h2), . . . , PQ(hQ):

1` Q P (h)hR (h) 5 dh P (h) log . (12)PE i h Q
i512` P (h )P i i

i51

This information redundancy measures the difference
between the joint and the factorized distribution: when
the redundancy R(h) 5 0, Ph(h) 5 Pi(hi), whichQPi51

means, by the definition in Eq. (9), that the components
of vector h are statistically independent. An important
remark is that, since no geometric constraint on the basis
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FIG. 2. The component extraction model: the perceptron architec-
ture, where x is the observation, h is the extracted component vector,
and y is the network ouput.

functions is specified in the redundancy quality criterion
of (12), the basis functions extracted by ICA, in contrast
to PCA, can be nonorthogonal.

A statistical regression model for the extraction model
in Eq. (11) has to be specified. For the nonlinear mixture
case the regression model needs to be nonlinear in order
to simulate G21. The Multi-Layer Perceptron (MLP), an
artificial neutral network model, could be chosen for
such a case. The nonlinear mixture case will be the
subject of future work.

In the present linear mixture case, we use a simpler
MLP architecture with no hidden layers as the extraction
model. This neural mapping is defined by (from right
to left in Fig. 2):

y 5 f (h) 5 f (J · x), (13)

where f is the logistic function (nonlinear, bounded, and
invertible). This model is basically a linear model, but
it employes a nonlinear logistic function. A nonlinear
f is used, even if the mixture model is linear, for al-
gorithmic considerations (Nadal and Parga 1994, 1997).
To obtain statistical independence, the manipulation of
higher moments (like ^ &, ^ &, ^ &, . . .) is required.3 4 5h h hi i i

Applying nonlinear f i to the hi’s allows one to include
these higher-order moments because the Taylor expan-
sion of f (h) uses higher powers of the hi values. So we
consider a nonlinear transformation (postfiltering step)
on the estimator h 5 J · x: the extracted components
are not the output y or the neural mapping (13), but the
vector h 5 J · x.

The parameters, Wi, defining the matrix J and the
optimal transfer functions f have to be determined by
minimizing the redundancy criterion in (12). Practically,
it has been demonstrated in various applications (Bell
and Sejnowski 1995) that full optimization of the trans-
fer functions is not necessary for performing ICA. Al-
though promising results have been obtained, this anal-

ysis strategy can be improved by introducing some par-
tial adaptation of the transfer functions to the particular
problem. We use here the classical sigmoid function f (x)
5 1/(1 1 e2b*x) that has proven generally useful.

With the information redundancy reduction criterion,
(12) and a no-hidden-layer architecture, a straightforward
algorithmic implementation of the ICA has been found
(Bell and Sejnowski 1995) to estimate the matrix :J

J (n 1 1) 2 J (n) 5 r(n) J 1 y J · h , (14)Oik ik ik i lk l1 2l

where Jik(n) is an element of the matrix at step n ofJ
the gradient descent, r is the learning rate parameter of
the gradient descent, and

] ]y ] ]yi iy 5 5 ln 5 1 2 2y . (15)i i1 2]y ]h ]h ]hi i i i

This algorithm is described in a more practical way
in the appendix.2 Note that, although the theory behind
this analysis method may seem complex, the actual com-
putational procedure that results for the linear case is
relatively simple.

ICA can be applied to the raw data, x( j), but it has
been shown (Nadal et al. 2000; Aires et al. 2000) that
a PCA preprocessing of observations makes the gradient
descent step stabler and faster. The N-dimensional data
x( j) are projected onto their first N9 (where N9 , N)
principal components using the matrix 0 of PCA: ob-J
servation noise is reduced and fewer free parameters
need to be estimated because the dimensions of the ma-
trix are considerably reduced, from Q 3 N to Q 3J
N9. The dimension of the compression N9 is chosen to
be equal to Q, the number of extracted components,
thus, is a Q 3 Q matrix. The PCA-compression pre-J
processing step does not alter the components extracted
by ICA if the neglected components (including noise)
are statistically weak sources (see Nadal et al. 2000 for
a definition of the term ‘‘weak’’). In this configuration,
the ICA can be considered equivalent to performing an
oblique rotation of the PCA solution by generalizing
decorrelation to statistical independence, but no addi-
tional criterion needs to be selected from among a large
number of possibilities like the localization constraints
in classical RT. The rotation matrix of the PCA solution

0 is the ICA solution Q 3 Q matrix . If the realJ J
physical components are Gaussian-distributed, then de-
correlation is sufficient and the ICA algorithm would
not change the PCA solution since zero gradient is al-
ready obtained. In the case where the components are
non-Gaussian, the ICA rotates the initial PCA solution.
So ICA improves the PCA solution only in the non-
Gaussian case. We note that there are many examples

2 See also the Computational Neuroscience Laboratory of Terry
Sejnowski at The Salk Institute for links to recent literature, software
and demos concerning the ICA paradigm: http://www.cnl.salk.edu/
;tewon/icapcnl.html.
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FIG. 3. Temporal basis functions, gi: ACTUAL (solid lines), PCA estimates (crossed lines), and ICA estimates (dotted lines).

TABLE 1. Variance explained by Noise, Real, PCA, and ICA
components.

Component Real PCA ICA

1
2
3
4
5
6

Noise

13.3
12.6
10.7
10.7
10.7
10.0
33.0

24.4
14.5
10.7
8.8
6.2
3.1

32.3

12.7
13.0
11.3
10.2
10.3
10.0
32.3

in the literature showing non-Gaussian distributions of
climate parameters, for example, cloud optical thickness
(Rossow and Schiffer 1991), precipitation water path
(Lin and Rossow 1996), and SST (Aires et al. 2000).

4. Application to a linear sum of components

a. Construction of the synthetic dataset

Geophysical time series have been analyzed by linear
statistical extraction techniques for decades. The syn-
thetic dataset used in this study is generated to mimic
the apparent expectations of such an analysis approach;
namely, that the observations are a linear sum of modes
with different space and time variations and, so, are
separable by such an analysis. Consequently, we ex-
agerate the space and time differences of some modes,
as compared to more realistic atmospheric modes, to
make their separation by PCA even easier. On the other
hand, we also include two modes that are spatially over-
lapped, but with different time behaviors, and two spa-

tially separated modes with identical time behavior rep-
resenting a teleconnection. There are also modes with
very different time behavior and two modes are rela-
tively highly correlated on time.

We select Q 5 6 components representing six dif-
ferent dynamical phenomena, each described by a dif-
ferent temporal basis function, g i (solid lines in Fig.
3), constructed from composites of sinusoids with dif-
ferent frequencies and phases. Each basis function has
been normalized to give a temporal standard deviation
of unity. The temporal dimension of these basis func-
tions is taken to be N 5 365 (e.g., one year of daily
data). A spatial resolution of 2.58 3 2.58 is chosen,
corresponding to M 5 144 3 72 5 10 368 pixels.
Finally, the dataset, 5 {x( j ) ∈ RN ; j 5 1, . . . , M},tXj

where RN is the space of real vectors of dimension N,
N 5 365 and M 5 10368, is formed from the time
series x( j ) for each pixel j by the linear sum of the
basis functions, x( j ) 5 g1s1(j) 1 · · · 1 gQsQ(j) 1 «
[linear model of Eq. (5)]. The term « is Gaussian-
distributed noise (zero mean and standard-deviation of
0.5), representing very noisy data as might be the case
when analysing climate anomalies.

The {si(j); i 5 1, . . . , Q} indicate the strength of
each component i at each pixel j, that is, the spatial
distributions. These strengths are constructed to have a
geographical bell-shaped distribution, giving a different
ellipsoidal distribution for each component (left column
in Fig. 4). Artificial land contours are introduced into
the display of s i for easier description of the modes.
One of the components has two peaks in its spatial
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FIG. 4. The maps (left) of the actual components, si, (middle) of the PCA extracted components, hi, and (right) of the ICA extracted
components, hi: components number 1–6 from the top to the bottom; component maps have been centered and normalized for comparison
purposes. The continental outlines are artificial and used to make discussion of specific features easier.

distribution (near the Americas) to represent a telecon-
nection pattern (map of component 1 in left column of
Fig. 4), so the total number of ellipsoidal peaks is seven.
Also, mode 5 is highly correlated in time with mode
one, but not perfectly correlated (correlation of the two
base functions without noise 20.7). The geographical
extent of two of the components overlaps in the Indian
Ocean (maps of components 4 and 6 in left column of
Fig. 4) to complicate the component extraction process.

The variance contributed by the Q 5 6 components
and the added noise is shown in Table 1: the components
produce 67% of the total variance and the noise pro-
duces 33%. The total variance of a component results
from the combination of the temporal variability of the
basis function (as a function of normalized amplitude
and frequency) and the spatial extent of the component.

b. Results of PCA and ICA

The PCA components are determined by computing
the matrix 0. The best number of PCA components toJ
extract is determined here by observing the spectrum
of cumulative percent of variance explained by the PCA
components (Fig. 5). More sophisticated criteria have
been developed to determine the number of significant
components (see, e.g., Jolliffe 1986). The first Q 5 6
PCA components represent roughly equal variance with
a total of 67.7% and the 359 remaining components
explain equal portions of the remaining 32.3% of the
total variance, representing the noise in the dataset. The
PCA temporal basis functions (crossed lines in Fig. 3)
are each compared with the real basis function to which
it best corresponds. PCA basis functions 2, 3, and 4
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FIG. 4. (Continued)

provide a relatively good estimate of the true functions,
although there are some errors near the peak values.
PCA temporal basis functions 1, 5, and 6 (low fre-
quencies) are much worse fits. In particular, higher fre-
quencies have been mixed into the real basis functions.

The corresponding PCA component maps are defined
at pixel j by the values (h1, . . . , hQ)( j) 5 0 · andJ X*j
are shown in Fig. 4 (middle column), where is theX*j
jth column of data matrix . We see that the PCA (orX
EOF) technique confuses elements from the different
components, the general mixing problem, such that all
of its components exhibit many more geographic peaks
than in the real components. Even if the corresponding
PCA temporal basis function is relatively well retrieved,
the corresponding component map still exhibits the mix-
ing problem (see especially PCA basis function 2 in Fig.
3 and the corresponding PCA component map in Fig.
4). If we had constructed more realistic components—
for example, covering the whole Pacific basin, Tropics,

or Northern Hemisphere—the mixing problem would
be much less apparent. The fact that PCA mixes these
well-separated components means it will mix the less
well-separated components of climate variations.

One cause of the mixing is well illustrated in Table
1 where the variance explained by each PCA component
is compared to the variance of the actual components.
The first PCA component explains 24.4% of the total
variance, which is much more than its true variance of
13.3%. The 6th PCA component represents only 3.1%,
which is a considerable underestimate of the real value
of 10%. Thus, the variance maximization property in
PCA shifts signal from other components into the first
component, producing a mixture of many true compo-
nent variabilities. The noise level estimate of 32.3% is
a good estimate, but its small underestimate of the real
noise is due to the projection of some noise onto the
first six PCA components (representing 0.7%).

Particularly notable in Fig. 4 is that the mixing ten-
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FIG. 5. Cumulative percent of explained variance by the PCA
components.

dency of the (unrotated) PCA could suggest many more
teleconnections in observations than are actually pre-
sent. Since in this synthetic case all six components
contribute roughly the same amount of variance (10%–
13%), the PCA technique has combined many of the
actually separate components into several of its com-
ponents, trying to maximize the amount of variance ex-
plained by each. After the first PCA component, sub-
sequent components often have a mixture of positive
and negative values (or loadings) because of the or-
thogonality constraint. This effect is especially apparent
for the overlapping components in the Indian Ocean:
two PCA basis functions possess broad central peaks
spanning the geographic distribution of both of the real
components and two others possess, in this same lo-
cation, two opposite-signed peaks (see PCA component
maps of components 1, 4, 5, and 6 in Fig. 4, middle
column). The alternating signs of the poles in the PCA
maps, due mainly to the orthogonality constraint, are
analogous to the alternating signs of the sinusoid func-
tions in a Fourier analysis. A similar projection of real
components into more than one PCA component occurs
when a geographically isolated mode moves during the
time period (Kim and Wu 1999). Moreover, the com-
ponent with two peaks near the Americas, representing
a real teleconnection, shows up in four of the PCA com-
ponents (components 1, 3, 4, and 6 in Fig. 4, middle
column), but mixed with other components as well, sug-
gesting teleconnections between the Americas and the
South Atlantic and Indian Oceans that do not exist. We
note also that components 1 and 5, even if they are
highly correlated (correlation of 0.7 of the temporal base
functions without noise), have been mixed into com-
ponent PCA 1. Dots in PCA component maps are lo-
calized contour lines, showing the sensitivity of PCA
component to data noise.

ICA can be applied directly to the raw data x( j) but,
as previously commented in Nadal et al. (2000) and
more briefly at the end of section 3, a PCA preprocessing

of observations makes the gradient descent step nu-
merically stabler and faster. So the observed data x( j)
are first projected onto the first Q 5 6 PCA components
using the matrix J0. This has the beneficial effect of
removing most of the noise. The ICA technique is then
applied to the preprocessed data, x̃( j) 5 J0 · x( j) (di-
mension Q 5 6 instead of N 5 365). As explained in
section 3, this is equivalent to performing a rotation on
the PCA initial solution where the rotation matrix is the
Q 3 Q matrix J of the ICA solution. Thus the six ICA
extracted components explain the same amount of var-
iance as the six PCA components (67.7%).

The six ICA basis functions are shown in Fig. 3 (dot-
ted lines). The ICA basis functions are very similar to
the real basis functions. This comparison shows how
the ICA technique has corrected its first guess (the PCA
solution) to be closer to the true solution. The additional
information obtained from the requirement for statistical
independence is nicely illustrated: the ICA technique
has transformed the PCA initial solution for a better
retrieval of all six components. The two highly corre-
lated components 1 and 5 have been clearly separated
by ICA, illustrating the importance of using the higher
order statistics to discriminate such modes. The ICA
component maps are presented in Fig. 4 (right column).
Generally, the components are well-retrieved and sep-
arated, even the teleconnection mode (ICA component
1 in Fig. 4, right column) and the two overlapping modes
in the Indian Ocean (ICA components 4 and 6 in Fig.
4, right column). The transformation of the PCA com-
ponent maps by ICA is always an improvement.

An experiment was conducted with the same data but
without the noise. The ICA separates the original six
modes almost perfectly and the ICA solution is very
close to the real solution. This result indicates that the
presence of measurement noise in a dataset will produce
a small amount of mode mixing even in the ICA so-
lution; however the results shown here (small hints of
other modes in ICA components 4 and 6 in Fig. 4, right
column) is produced by a situation where the signal-to-
noise ratio is only about two. Although this situation
may be relevant to climate studies, ICA can separate
most of the noise into its own statistically independent
mode.

Table 1 shows that the variance explained by the ICA
components is much closer to the real solution than the
initial PCA components: the variance explained by the
first couple of modes decreases and that retained by the
remaining modes increases. Differences between the
true and ICA explained variance for each component
are less than 0.6%, where the discrepancies are the result
of the projection of some part of the noise onto the ICA
components.

5. Concluding remarks

For extraction of physically meaningful modes from
observations, where the characteristics of the system’s
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dynamics are not (well-) known, identifying statistically
independent variation modes seems to be a sensible al-
ternative for the rotation of a first PCA (i.e., EOF) so-
lution to avoid the PCA mixing problem. Our simple
example shows that in the most general, though still
linear, case (the most favorable condition for PCA),
PCA will mix modes of comparable magnitude, gen-
erating spurious regional overlaps or teleconnections
where none exists or distorting existing overlaps or te-
leconnections. In the case of correlated modes, PCA
produces mixing by combining the correlated parts of
the modes and separating the less correlated parts, spu-
riously dividing some modes. The PCA is useful in a
lot of applications, particularly when the user is inter-
ested in only one strong component in the observations
that explains the maximum of variance. Note, however,
that such use in recent studies requires substantial pre-
filtering of the data to isolate such a mode; this is equiv-
alent to application of very strong a priori information
about the mode in question. But to extract components
when there are several, PCA results will to be mislead-
ing, even for a simple linear mixture.

We have shown the potential of the ICA technique
for separating a complex signal in a more meaningful
way. The mixing problem inherent in the PCA technique
and the artifacts produced by the orthogonality and max-
imum-variance constraints of PCA are avoided when
rotated by ICA. Moreover, the use of higher-order sta-
tistics by ICA to determine statistical independence as-
sumes only the generalization of the decorrelation used
in all classical approaches. In some cases, as we have
shown, use of higher-order statistics is key to separating
similar modes. Nevertheless, even statistical indepen-
dence does not guarantee that the modes produced by
different physical processes will be separated. Like oth-
er statistical methods, without a priori information about
the actual physical modes in the observations, there is
no guarantee that the components extracted have a phys-
ical meaning. The user of a particular technique should
keep in mind the assumptions used in the technique, the
qualities and deficiencies of the method, and be able to
put these in the context of each application. The ad-
vantage of ICA is its straightforward criterion, that is,
the statistical independence of its extracted components.

Some practical disadvantages of ICA exist. As with
rotation techniques, it needs an a priori definition of the
number of components to extract. But like oblique ro-
tations (Richman 1981), ICA still should be able to
extract meaningful components even if more compo-
nents are extracted than there are actually in the obser-
vations (i.e., overfactoring). Practically, the use of high-
er-order statistics requires many more samples than us-
ing second-order statistics, placing stronger demands on
the data needed. In addition, the higher-order moments
are more sensitive to outliers; however, our use of PCA
as a first step in the PCA helps reduce this problem by
removing most of the noise and any low frequency-of-
occurrence outliers. Computationally, ICA requires

more resources than PCA, but the convergence of the
ICA algorithm is very fast.

ICA, by finding statistically independent modes, may
provide a better starting point to explore the unknown
dynamics of a system. In the case of climate variations,
where the components of the system are probably cou-
pled (see, e.g., Salby and Callaghan 2000 or Krishna-
murthy and Goswami 2000), considering the modes to
be as statistically distinct as possible, even with a linear-
ICA, would provide ‘‘prototypical’’ components that
might serve as a guide to further investigation. As with
the classical PCA technique or classical RT, this first
(linear) ICA algorithm is not able to deal correctly with
propagating components or components mixed nonli-
nearly. However, the ICA paradigm (statistical inde-
pendence) may be a sufficiently powerful concept to be
generalized using more advanced statistical models
(e.g., more complicated neural networks) to treat non-
linear problems. This requires development of nonlinear
solution algorithms and their testing for cases where the
combination of modes is nonlinear, when components
are physically linked, and for cases with propagating
modes.
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APPENDIX

Principal Steps of the Algorithm

We adopt here the linear model x 5 G · s, where x
is the observation, G is the basis function matrix, and
s is the vector of components to estimate. The goal of
the statistical decomposition technique is to estimate a
matrix J 5 G21 (the superscript 21 represents the pseu-
doinverse if G is not square), the filter matrix, using
only a dataset of observations {xe; e 5 1, . . . , E},
where E is the number of samples in the dataset. With
the matrix J applied to each observation x, the com-
ponents s are estimated by s . h 5 J · x, and the basis
function matrix G is estimated by the inverse matrix
J21.

The principal steps of the time series analysis by the
ICA technique are the following.

• Optional preprocessing: The dataset 5 {x( j)tXj

∈ RN; j 5 1, . . . , M}, where t is the time index and j
is the space index (geographical locations), may require
preprocessing: 1) spatial, temporal, or spatio–temporal
interpolation to fill in missing data, 2) filtering of data
to suppress undesirable frequencies (noise effects), 3)
detrending to obtain stationary data, and 4) removing
the annual cycle to examine interannual anomalies.
None of these steps is required.

• Chose the space for the decomposition: 1) Chose
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the space in time, which is the approach we have adopt-
ed in our study:

x( j) 5 g s (j) 1 · · · 1 g s (j) 1 «;1 1 Q Q

2) in space, 3) in frequency, or 4) in a mixture of these
spaces. The observations (a time series or a geographical
field, . . .) are denoted, in the following, by the d-di-
mensional vector xe and the dataset is {xe; e 5 1, . . . ,
E}.

• Center the dataset: The observation mean ^xe& is
removed from the dataset: xe ← xe 2 ^xe&. This step is
necessary for statistical techniques where data are sup-
posed to have zero mean like ICA.

• Optional normalization: If the user wants to put
the same statistical weight on each coordinate of the
observation xe; then the dataset can be normalized by
the standard-deviation vector xe ← xe/ex.

• Optional Eigenvector decomposition: The co-
variance (or correlation, in the case of normalized ob-
servations) matrix ^xt · x& is estimated from the dataset.
The eigenvalues L (diagonal matrix) and the eigenvec-
tor matrix of ^xt · x& are then computed using a clas-V
sical numerical routine. The number of PCA or ICA
extracted components Q is chosen by observing the
spectrum of eigenvalues.

• Optional PCA solution: The PCA solution is com-
puted to preprocess the data.

(i) The d 3 Q PCA basis function matrix GPCA con-
tains in its columns the first Q eigenvectors of (theV
columns of V represent time series in the time decom-
position, and geographical field in the space decom-
position, . . .).

(ii) Since, by definition, V21 5 Vt, the filter PCA
matrix, JPCA, is equal to the transposed Q 3 d basis
function matrix, GPCA. Then, the extracted components
h that estimate the true components s are the projection
of the observations x onto the filters: h 5 JPCA · x.

(iii) The first Q eigenvalues in L represent the var-
iability explained by each of the Q components.

• ICA solution:
(i) Prewhitening of dataset: The PCA solution is used

as a preprocessing step, and the observations xe are
projected onto the PCA filters xe ← PCA · xe. The ICAJ
algorithm is then applied into these Q-dimensional data.

(ii) The ICA solution JICA is initialized as the identity
matrix IQ3Q. This, associated to the previous whitening
step, is equivalent to taking the PCA solution as first
guess for ICA.

(iii) For the minimization of the criterion specifying
the statistical independence, a gradient descent algo-
rithm is used. The classical gradient descent uses all the
samples of the dataset to compute a mean DJik 5 Jik(n
1 1) 2 Jik(n) in Eq. (14). This algorithm is called the
deterministic gradient descent. The major inconvenience
of this algorithm is that it can be trapped in local min-
ima. We use, in our application, the stochastic gradient
descent algorithm that uses the gradient descent formula
(14) iteratively in unique random samples of the dataset.

The stochastic character of the optimization algorithm
allows theoretically, and under some constraint not dis-
cussed here, for the optimization technique to reach the
global minimum of the criterion instead of a local min-
imum (Duflo 1996).

(iv) An observation xe is randomly chosen in the da-
taset. The propagation through the neural network (cho-
sen model for the component extraction) is given by y
5 f (h) 5 f ( ICA · xe), where f (a) 5 [1 1 exp(2b ·J
a)]21 is the logistic function. The parameter b controls
the slope of the logistic function, and we take b 5 2.0
as in Bell and Sejnowski (1995). The FORTRAN routine
of this process is:

c—propagation through the neural network
do i 5 1, d

h(i) 5 0.d0
do k 5 1, d

h(i) 5 h(i) 1 JICA(i, k)∗ ex (k)
enddo
h(i) 5 h(i) 1 bia(i)
y(i) 5 1.d0/(1.d0 1 d exp(2b∗h(i)))

enddo,

where bia is the classical bias vector in an MLP neural
network (not shown in the text for simplicity). We use,
in this routine, double precision variables to avoid nu-
merical instabilities.

(v) The learning process is then defined as:

c—transitory quantities
do j 5 1, d

hhh( j) 5 0.d0
do k 5 1, d

hhh( j) 5 hhh( j) 1 JICA(k, j)∗h(k)
enddo

enddo

c—modification of weights
do i 5 1, d

do j 5 1, d
JICA(i, j) 5 JICA(i, j) 1 param∗

& (JICA(i, j) 1 b∗(1.d0 2 2.d0∗y(i))∗hhh( j))
enddo
bia(i) 5 bia(i) 1 b∗(1.d0 2 2.d0∗y(i))

enddo

where param is the learning parameter of the gradient
descent optimization (we take param 5 0.0005).

(vi) Stopping criterion: Many criteria can be used to
define when to stop the learning cycle. The simplest
criterion is to determine a priori the number of learning
steps. A better criterion is to determine when the dif-
ference between solution JICA at time t and at time t 1
1 falls below some threshold value. Another stopping
criterion is to evaluate the statistical independence of
the extracted components. Here, h cumulants (i.e., ad-
ditive higher-order moments) are a practical way to do
that, but this approach is computationally expensive.
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The learning algorithm returns to step 4 until the stop-
ping criterion is reached.

• Analysis of results: When the matrix JICA has been
determined by ICA, the global ICA filters (taking into
account the PCA preprocessing) are defined by the Q
3 d matrix: JGLO 5 JICA · JPCA.

(i) The projection of data is used to estimate the com-
ponents: h 5 JGLO · xe.

(ii) The d 3 Q ICA basis function matrix GGLO 5
5 GPCA · is normalized to obtain normalized21 21J JGLO ICA

ICA basis functions, as in PCA approach.
(iii) Computation of explained variance of each of

the basis functions.
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